当前位置 博文首页 > sinat_15677011的博客:电芯温度采样电路几个关键点

    sinat_15677011的博客:电芯温度采样电路几个关键点

    作者:[db:作者] 时间:2021-09-02 13:08

    NTC选型

    在这里插入图片描述
    图1 NTC采样电路

    BMS的温度采样精度包括两部分,一是电路本身的采样精度,二是NTC的精度。

    在QCT-897中并没没有把NTC单独拿出来讲,但实际里面的采样精度要求是包括NTC这一部分的,而且NTC的精度对整体温度采样精度影响很大;很多主机厂只提出了一个整体的温度精度要求,但我们要知道里面的潜规则,要主动找主机厂问一下NTC是怎么选取的,因为这一块极大可能是别人选型的。

    电路本身的采样精度,又包括了上拉电阻精度、ADC精度、参考电压源精度、供电电源精度,这个才是我们电路设计需要关注的问题。

    那么,选择什么样子的NTC呢?下图是石冢官网的选型表,我试着介绍里面的两个关键特性参数。

    在这里插入图片描述
    图片 2石冢NTC选型表(来源其官网)

    R25阻值

    热敏电阻的阻值在日本工业标准JIS C 5602中是这样定义的:在规定的环境温度下,阻体受到检测电流自身发热,而引起的电阻值变化相对于总的检测误差可以忽略不计的检测电功率测得的热敏电阻的直流电阻值。也叫零功率电阻值,R25就对应25℃的环境温度。

    它的精度代表此环境温度下的阻值变化范围,从实际应用来看,常用的精度也就是±1%,很少见到更高的精度。

    R25阻值常见的有10K、47K、100K,基本上见到的大部分是10K的,其他的比较少,现实中都是这样选取的;可是如果我们自己来选取的话,我要选取哪一种阻值呢?

    其实这就要看我们想要NTC处于多大的阻值范围了。在-40℃~125℃里,不同阻值的R25,它对应的阻值范围也是不同的;简单说就是,R25越大,它在其他温度点的阻值也就越大(参照下图)。
    在这里插入图片描述
    图片3 石冢KT系列RT表(来源其官网)

    R25不是越大越好,一种可能的影响参照下图,如果ADC内阻不大的话,阻值在低温时可能会与NTC的阻值接近,这样就会影响温度的采样精度了。

    在这里插入图片描述
    图片4 内阻偏小可能会造成采样偏差

    B值

    B值是用来表示NTC对温度变化敏感度的物理量,即阻值的变化率。

    参照下图,B值大,阻值的变化率也大,对温度的变化也就越敏感。
    在这里插入图片描述
    图片5 B值大小的区别示意
    B值的计算方法是拿两个温度点作为参考点,一般厂家是25℃和85℃,也标记为B25/85,它的计算公式如下。
    在这里插入图片描述
    在现实使用中,接触到的很多NTC的 B值是3435±1%,大家可以作为一个参考值去选型;另外B值越大,R25也越大,二者之间很难灵活匹配。

    总结

    大家在电路设计时,会有一个期望的电阻范围;在这个范围内,温度点尽量要分散,两个温度点之间的阻值距离要大,这样我们可以用来分辨的准确度就会提高。所以可以根据R25和B值(即RT表),来锁定我们想要的NTC的型号。

    上拉电阻

    上拉电阻一般选取与NTC-R25接近的值,例如10K(假如R25=10K);这样是为了把全温度范围的电阻分压值尽量分散在我们整个采样区间,而不是都聚集在某一段电压范围,提高分辨率。

    上拉电阻一般选取的是厚膜电阻,精度1%,温漂200ppm以内;提高精度,减小温漂肯定是能提高温度采样精度的,但是考虑成本因素,够用就好。

    上拉电源

    上拉电源用于分压给NTC,将电阻信号转换成电压信号,然后给ADC去采集,所以上拉电源的精度至关重要;一般它来自于ASIC内部的辅助5V输出电源,精度5%左右,都不会很高。注意,这个电源并不是ADC内部的参考源,是两回事

    所以,有的ASIC厂家为了解决这个电源不精确的问题,提出了一个相对测量的方法:即在进行温度采样时,把外部的上拉电源同时当做内部ADC的参考源,这样在计算过程中,会把这个上拉电源当做一个比例常量而消掉,大家可以自己算一下;目前NXP\TI\美信都有这种相对测量模式可供选择。

    在这里插入图片描述

    ADC

    一般使用AFE来作为温度采集的ADC(有的方案使用MCU内部ADC),它需要注意的就是其端口的等效输入电阻,厂家可能会以另外一种漏电流的形式给出(如下图,来自LTC6813规格书);如果这个漏电流很大的话,代表其输入电阻比较小,那此时就需要注意了,不要选择低温阻值比较大的NTC。

    在这里插入图片描述
    TI的536芯片,温度采样通道等效输入电阻只有50K左右,所以厂家推荐了一个采样电路(如下图,来源于TI官网),采样端口放一个阻值较小的固定电阻,而NTC放在上拉电阻的位置上,这样把影响降低到最小。

    在这里插入图片描述

    在这里插入图片描述

    NTC引线等

    引线电阻实际被我们当做NTC阻值的一部分而计算在内的;由于它很小,几欧姆的范围,所以一般被忽略不计。

    标定

    最后再说说标定,在硬件电路设计完成之后,精度基本上就定下来了;不过还可以再挣扎一下,就是通过标定的方法。
    标定的对象一般是电路中的一个常量,但这个常量并不是绝对意义上的常量,它有一定的初始误差和动态误差,标定的目的就是及时修正这个误差,让常量变成绝对意义上面的常量。像温度采样电路,上拉电源可以作为一个标定目标,上拉电阻也可以作为一个标定目标


    本文转自--------新能源BMS

    cs
    下一篇:没有了