当前位置 博文首页 > 详解pandas apply 并行处理的几种方法

    详解pandas apply 并行处理的几种方法

    作者:jingyi130705008 时间:2021-07-21 18:45

    1. pandarallel (pip install )

    对于一个带有Pandas DataFrame df的简单用例和一个应用func的函数,只需用parallel_apply替换经典的apply。

    from pandarallel import pandarallel
     
    # Initialization
    pandarallel.initialize()
     
    # Standard pandas apply
    df.apply(func)
     
    # Parallel apply
    df.parallel_apply(func)
    

    注意,如果不想并行化计算,仍然可以使用经典的apply方法。

    另外可以通过在initialize函数中传递progress_bar=True来显示每个工作CPU的一个进度条。

    2. joblib (pip install )

     https://pypi.python.org/pypi/joblib

    # Embarrassingly parallel helper: to make it easy to write readable parallel code and debug it quickly
     
    from math import sqrt
    from joblib import Parallel, delayed
     
    def test():
      start = time.time()
      result1 = Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10000))
      end = time.time()
      print(end-start)
      result2 = Parallel(n_jobs=8)(delayed(sqrt)(i**2) for i in range(10000))
      end2 = time.time()
      print(end2-end)
    

    -------输出结果----------

    0.4434356689453125
    0.6346755027770996

    3. multiprocessing

    import multiprocessing as mp
     
    with mp.Pool(mp.cpu_count()) as pool:
      df['newcol'] = pool.map(f, df['col'])
    multiprocessing.cpu_count()
    
    

    返回系统的CPU数量。

    该数量不同于当前进程可以使用的CPU数量。可用的CPU数量可以由 len(os.sched_getaffinity(0)) 方法获得。

    可能引发 NotImplementedError 。

    参见os.cpu_count()

    4. 几种方法性能比较

    (1)代码

    import sys
    import time
    import pandas as pd
    import multiprocessing as mp
    from joblib import Parallel, delayed
    from pandarallel import pandarallel
    from tqdm import tqdm, tqdm_notebook
     
     
    def get_url_len(url):
      url_list = url.split(".")
      time.sleep(0.01) # 休眠0.01秒
      return len(url_list)
     
    def test1(data):
      """
      不进行任何优化
      """
      start = time.time()
      data['len'] = data['url'].apply(get_url_len)
      end = time.time()
      cost_time = end - start
      res = sum(data['len'])
      print("res:{}, cost time:{}".format(res, cost_time))
     
    def test_mp(data):
      """
      采用mp优化
      """
      start = time.time()
      with mp.Pool(mp.cpu_count()) as pool:
        data['len'] = pool.map(get_url_len, data['url'])
      end = time.time()
      cost_time = end - start
      res = sum(data['len'])
      print("test_mp \t res:{}, cost time:{}".format(res, cost_time))
     
    def test_pandarallel(data):
      """
      采用pandarallel优化
      """
      start = time.time()
      pandarallel.initialize()
      data['len'] = data['url'].parallel_apply(get_url_len)
      end = time.time()
      cost_time = end - start
      res = sum(data['len'])
      print("test_pandarallel \t res:{}, cost time:{}".format(res, cost_time))
     
     
    def test_delayed(data):
      """
      采用delayed优化
      """
      def key_func(subset):
        subset["len"] = subset["url"].apply(get_url_len)
        return subset
     
      start = time.time()
      data_grouped = data.groupby(data.index)
      # data_grouped 是一个可迭代的对象,那么就可以使用 tqdm 来可视化进度条
      results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
      data = pd.concat(results)
      end = time.time()
      cost_time = end - start
      res = sum(data['len'])
      print("test_delayed \t res:{}, cost time:{}".format(res, cost_time))
     
     
    if __name__ == '__main__':
      
      columns = ['title', 'url', 'pub_old', 'pub_new']
      temp = pd.read_csv("./input.csv", names=columns, nrows=10000)
      data = temp
      """
      for i in range(99):
        data = data.append(temp)
      """
      print(len(data))
      """
      test1(data)
      test_mp(data)
      test_pandarallel(data)
      """
      test_delayed(data)
    

    (2) 结果输出

    1k
    res:4338, cost time:0.0018074512481689453
    test_mp   res:4338, cost time:0.2626469135284424
    test_pandarallel   res:4338, cost time:0.3467681407928467
     
    1w
    res:42936, cost time:0.008773326873779297
    test_mp   res:42936, cost time:0.26111721992492676
    test_pandarallel   res:42936, cost time:0.33237743377685547
     
    10w
    res:426742, cost time:0.07944369316101074
    test_mp   res:426742, cost time:0.294996976852417
    test_pandarallel   res:426742, cost time:0.39208269119262695
     
    100w
    res:4267420, cost time:0.8074917793273926
    test_mp   res:4267420, cost time:0.9741342067718506
    test_pandarallel   res:4267420, cost time:0.6779992580413818
     
    1000w
    res:42674200, cost time:8.027287006378174
    test_mp   res:42674200, cost time:7.751036882400513
    test_pandarallel   res:42674200, cost time:4.404983282089233

    在get_url_len函数里加个sleep语句(模拟复杂逻辑),数据量为1k,运行结果如下:

    1k
    res:4338, cost time:10.054503679275513
    test_mp   res:4338, cost time:0.35697126388549805
    test_pandarallel   res:4338, cost time:0.43415403366088867
    test_delayed   res:4338, cost time:2.294757843017578

    5. 小结

    (1)如果数据量比较少,并行处理比单次执行效率更慢;

    (2)如果apply的函数逻辑简单,并行处理比单次执行效率更慢。

    6. 问题及解决方法

    (1)ImportError: This platform lacks a functioning sem_open implementation, therefore, the required synchronization primitives needed will not function, see issue 3770.

    https://www.jianshu.com/p/0be1b4b27bde

    (2)Linux查看物理CPU个数、核数、逻辑CPU个数

    https://lover.blog.csdn.net/article/details/113951192

    (3) 进度条的使用

    http://blog.iis7.com/article/206219.htm

    jsjbwy
    下一篇:没有了