当前位置 博文首页 > lenkee的博客:常用的几种设计模式详解

    lenkee的博客:常用的几种设计模式详解

    作者:[db:作者] 时间:2021-08-31 19:16

    设计模式的概述

    设计模式分类

    • 创建型模式

      特点是将对象的创建与使用分离(解耦),有 单例、原型、工厂方法、抽象工厂、建造者等5种。

    • 结构型模式

      用于描述如何将类或对象按某种布局组成更大的结构,代理、适配器、桥接、装饰、享元、组合等7种。

    • 行为型模式

      用于描述类或对象之间相互协作共同完成 单个对象无法完成的任务,模板方法、策略命令、职责链、状态观察者、中介者、迭代器、访问者、备忘录、解释器等11种。

    UML

    包含了用例图、类图、对象图、状态图、活动图、时序图、协作图、构建图、部署图等9种。

    类图概述

    类图显示了模型的静态结构

    类的作用

    • 简化了人们对系统的理解

    • 是系统编码和测试的重要模型

    类图表示法

    类的表示方式

    在这里插入图片描述

    类与类之间关系表示方式

    关联关系

    用于表示一类与另一类对象之间的联系,如老师和学生

    • 1.单项关联

      在这里插入图片描述

    • 2.双向关联

    在这里插入图片描述

    • 3.自关联

      在这里插入图片描述

    聚合关系

    聚合关系是关联关系的一种,是强关联关系,是整体和部分之间的关系。

    聚合关系也是通过成员对象来实现的,其中成员对象是整体对象的一部分,但是成员对象可以脱离整体对象而独立存在。例如,学校与老师的关系,学校包含老师,但如果学校停办了,老师依然存在。

    在 UML 类图中,聚合关系可以用带空心菱形的实线来表示,菱形指向整体。下图所示是大学和教师的关系图:

    在这里插入图片描述

    组合关系

    组合表示类之间的整体与部分的关系,但它是一种更强烈的聚合关系。

    在组合关系中,整体对象可以控制部分对象的生命周期,一旦整体对象不存在,部分对象也将不存在,部分对象不能脱离整体对象而存在。例如,头和嘴的关系,没有了头,嘴也就不存在了。

    在 UML 类图中,组合关系用带实心菱形的实线来表示,菱形指向整体。下图所示是头和嘴的关系图:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TxZN80TZ-1617951667348)(img/image-20191229173455149.png)]

    依赖关系

    依赖关系是一种使用关系,它是对象之间耦合度最弱的一种关联方式,是临时性的关联。在代码中,某个类的方法通过局部变量、方法的参数或者对静态方法的调用来访问另一个类(被依赖类)中的某些方法来完成一些职责。

    就是一个类里面有另一个类作参数

    在 UML 类图中,依赖关系使用带箭头的虚线来表示,箭头从使用类指向被依赖的类。下图所示是司机和汽车的关系图,司机驾驶汽车:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vosJgQmb-1617951667348)(img/image-20191229173518926.png)]

    继承关系

    继承关系是对象之间耦合度最大的一种关系,表示一般与特殊的关系,是父类与子类之间的关系,是一种继承关系。

    在 UML 类图中,泛化关系用带空心三角箭头的实线来表示,箭头从子类指向父类。在代码实现时,使用面向对象的继承机制来实现泛化关系。例如,Student 类和 Teacher 类都是 Person 类的子类,其类图如下图所示:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yJ4jmANX-1617951667349)(img/image-20191229173539838.png)]

    实现关系

    实现关系是接口与实现类之间的关系。在这种关系中,类实现了接口,类中的操作实现了接口中所声明的所有的抽象操作。

    在 UML 类图中,实现关系使用带空心三角箭头的虚线来表示,箭头从实现类指向接口。例如,汽车和船实现了交通工具,其类图如图 9 所示。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bEtOfEmv-1617951667349)(img/image-20191229173554296.png)]

    软件设计原则

    开闭原则

    对扩展开放,对修改关闭。在不修改原有的代码,实现一个热插拔的效果。简言之,是为了更好的扩展。我们可以使用接口和抽象类

    因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

    里氏代换原则

    里氏代换原则:任何基类可以出现的地方,子类一定可以出现。通俗理解:子类可以扩展父类的功能,但不能改变父类原有的功能。换句话说,子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法

    如果通过重写父类的方法来完成新的功能,这样写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。

    依赖倒转原则

    高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。简单的说就是要求对抽象进行编程,不要对实现进行编程(使用接口),这样就降低了客户与实现模块间的耦合。

    接口隔离原则

    客户端不应该被迫依赖于它不使用的方法;一个类对另一个类的依赖应该建立在最小的接口上(接口的方法尽量拆分)。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OTncFwKD-1617951667349)(img/接口隔离.png)]

    迪米特法则

    迪米特法则又叫最少知识原则。

    只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to strangers)。

    其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。

    迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。

    合成复用原则

    合成复用原则是指:尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。

    通常类的复用分为继承复用和合成复用两种。

    采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点:

    1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
    2. 对象间的耦合度低。可以在类的成员位置声明抽象。
    3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

    如下,将继承复用改为聚合复用

    在这里插入图片描述

    修改后

    创建者模式

    创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是“将对象的创建与使用分离”。

    这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。

    可分为 单例模式、工厂方法模式、抽象工程模式、原型模式、建造者模式。

    单例模式

    单例模式的结构

    单例模式的实现

    1. 饿汉式

    2. 懒汉式

    3. 懒汉式-双重检查锁

      /**
       * 双重检查方式
       */
      public class Singleton { 
      
          //私有构造方法
          private Singleton() {}
      
          private static volatile Singleton instance;
      
         //对外提供静态方法获取该对象
          public static Singleton getInstance() {
      		//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例
              if(instance == null) {
                  synchronized (Singleton.class) {
                      //抢到锁之后再次判断是否为null
                      if(instance == null) {
                          instance = new Singleton();
                      }
                  }
              }
              return instance;
          }
      }
      
    4. 枚举方式

      /**
       * 枚举方式
       */
      public enum Singleton {
          INSTANCE;
      }
      

    存在问题

    • 序列化反序列化破坏
    • 通过反射通过单例模式

    工厂模式

    概述

    ? 在java中,万物皆对象,这些对象都需要创建,如果创建的时候直接new该对象,就会对该对象耦合严 重,假如我们要更换对象,所有new对象的地方都需要修改一遍,这显然违背了软件设计的开闭原则。

    如果我们使用工厂来生产对象,我们就只和工厂打交道就可以了,彻底和对象解耦,如果要更换对象,直接在工厂里更换该对象即可,达到了与对象解耦的目的;所以说,工厂模式最大的优点就是:解耦

    工厂模式分三种,简单工厂模式,工厂方法模式,抽象工厂模式。

    简单工厂模式

    简单工厂不是模式,是一种编程习惯。

    • 抽象产品 :定义了产品的规范,描述了产品的主要特性和功能。
    • 具体产品 :实现或者继承抽象产品的子类
    • 具体工厂 :提供了创建产品的方法,调用者通过该方法来获取产品。

    优缺点

    优点:

    封装了创建对象的过程,可以通过参数直接获取对象。把对象的创建和业务逻辑层分开,这样以后就避免了修改客户代码,如果要实现新产品直接修改工厂类,而不需要在原代码中修改,这样就降低了客户代码修改的可能性,更加容易扩展。

    缺点:

    增加新产品时还是需要修改工厂类的代码,违背了“开闭原则”。

    扩展-静态工厂

    在开发中也有一部分人将工厂类中的创建对象的功能定义为静态的,这个就是静态工厂模式,它也不是

    23种设计模式中的。代码如下:

    public class SimpleCoffeeFactory {
        public static Coffee createCoffee(String type) {
            //声明Coffee类型的变量,根据不同类型创建不同的coffee子类对象
            Coffee coffee = null;
            if("american".equals(type)) {
                coffee = new AmericanCoffee();
            } else if("latte".equals(type)) {
                coffee = new LatteCoffee();
            } else {
                throw new RuntimeException("对不起,您所点的咖啡没有");
            }
    
            return coffee;
        }
    }
    

    工厂方法模式

    概念

    定义一个用于创建对象的接口,让子类决定实例化哪个产品类对象。工厂方法使一个产品类的实例化延

    迟到其工厂的子类。

    结构

    • 抽象工厂(Abstract Factory):提供了创建产品的接口,调用者通过它访问具体工厂的工厂

    方法来创建产品。

    • 具体工厂(ConcreteFactory):主要是实现抽象工厂中的抽象方法(重写抽象抽象工厂方法),完成具体产品的创建。

    • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能。

    • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同

    具体工厂之间一一对应。

    实现

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YrFeCxGw-1617951667350)(img/工厂方法模式.png)]

    优缺点

    优点:

    用户只需要知道具体工厂的名称就可得到所要的产品,无须知道产品的具体创建过程;

    在系统增加新的产品时只需要添加具体产品类和对应的具体工厂类,无须对原工厂进行任何修改,

    满足开闭原则;

    缺点:

    每增加一个产品就要增加一个具体产品类和一个对应的具体工厂类,这增加了系统的复杂度。

    抽象工厂模式

    前面介绍的工厂方法模式中考虑的是一类产品的生产,如畜牧场只养动物、电视机厂只生产电视机、传智播客只培养计算机软件专业的学生等。

    这些工厂只生产同种类产品,同种类产品称为同等级产品,也就是说:工厂方法模式只考虑生产同等级的产品,但是在现实生活中许多工厂是综合型的工厂,能生产多等级(种类) 的产品,如电器厂既生产电视机又生产洗衣机或空调,大学既有软件专业又有生物专业等。

    本节要介绍的抽象工厂模式将考虑多等级产品的生产,将同一个具体工厂所生产的位于不同等级的一组产品称为一个产品族,下图所示横轴是产品等级,也就是同一类产品;纵轴是产品族,也就是同一品牌的产品,同一品牌的产品产自同一个工厂。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QNRaLyeM-1617951667350)(img/产品组产品等级.png)]

    概念

    抽象工厂模式是工厂方法模式的升级版本,工厂方法模式只生产一个等级的产品,而抽象工厂模式可生产多个等级的产品。

    结构

    • 抽象工厂:提供了创建产品的接口,它包含多个创建产品的方法,可以创建多个不同等级的产品

    • 具体工厂:主要是实现抽象工厂中的多个抽象方法,完成具体产品的创建

    • 抽象产品:定义了产品的规范,描述了产品的主要特性和功能,抽象工厂模式有多

      个抽象产品。

    • 具体产品:实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间是多对一的关系。

    实现

    现咖啡店业务发生改变,不仅要生产咖啡还要生产甜点,如提拉米苏、抹茶慕斯等,要是按照工厂方法模式,需要定义提拉米苏类、抹茶慕斯类、提拉米苏工厂、抹茶慕斯工厂、甜点工厂类,很容易发生类爆炸情况。其中拿铁咖啡、美式咖啡是一个产品等级,都是咖啡;提拉米苏、抹茶慕斯也是一个产品等级,都是甜品;拿铁咖啡和提拉米苏是同一产品族(也就是都属于意大利风味),美式咖啡和抹茶慕斯是同一产品族(也就是都属于美式风味)。所以他们是一个二维结构,分别表示产品等级,和产品组。这个案例可以使用抽象工厂模式实现,类图如下:

    如果要加同一个产品族的话,只需要再加一个对应的工厂类即可,不需要修改其他的类。

    优缺点

    优点:

    当一个产品族中的多个对象被设计成一起工作时,它能保证客户端始终只使用同一个产品族中的对象。

    缺点:

    当产品族中需要增加一个新的产品时,所有的工厂类都需要进行修改。

    使用场景

    • 当需要创建的对象是一系列相互关联或相互依赖的产品族时,如电器工厂中的电视机、洗衣机、空调等。

    • 系统中有多个产品族,但每次只使用其中的某一族产品。如有人只喜欢穿某一个品牌的衣服和鞋。

    • 系统中提供了产品的类库,且所有产品的接口相同,客户端不依赖产品实例的创建细节和内部结构。

    如:输入法换皮肤,一整套一起换。生成不同操作系统的程序。

    模式扩展

    简单工厂+配置文件解除耦合

    可以通过工厂模式+配置文件的方式解除工厂对象和产品对象的耦合(spring框架就是用的这个)。在工厂类中加载配置文件中的全类名,并创建对象进行存储,客户端如果需要对象,直接进行获取即可。

    第一步:定义配置文件

    american=com.itheima.pattern.factory.config_factory.AmericanCoffee latte=com.itheima.pattern.factory.config_factory.LatteCoffee
    

    第二步:改进工厂类

    JDK源码解析-Coleection.iterator方法

    我们看通过类图看看结构:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lGuLlJX1-1617951667351)(img/iterator方法.png)]

    Collection接口是抽象工厂类,ArrayList是具体的工厂类;Iterator接口是抽象商品类,ArrayList类中的Iter内部类是具体的商品类。在具体的工厂类中iterator()方法创建具体的商品类的对象。

    另:

    1,DateForamt类中的getInstance()方法使用的是工厂模式;
    
    2,Calendar类中的getInstance()方法使用的是工厂模式;
    

    原型模式

    概述

    用一个已经创建的实例作为原型,通过复制该原型对象来创建一个和原型对象相同的新对象。

    结构

    原型模式包含如下角色:

    • 抽象原型类:规定了具体原型对象必须实现的的 clone() 方法。

    • 具体原型类:实现抽象原型类的 clone() 方法,它是可被复制的对象。

    • 访问类:使用具体原型类中的 clone() 方法来复制新的对象。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8zhDipvn-1617951667351)(img/原型模式.png)]

    实现

    原型模式的克隆分为浅克隆和深克隆。

    浅克隆:创建一个新对象,新对象的属性和原来对象完全相同,对于非基本类型属性,仍指向原有属性所指向的对象的内存地址。

    深克隆:创建一个新对象,属性中引用的其他对象也会被克隆,不再指向原有对象地址。

    Java中的Object类中提供了 clone() 方法来实现浅克隆。 Cloneable 接口是上面的类图中的抽象原型类,而实现了Cloneable接口的子实现类就是具体的原型类。

    使用场景

    • 对象的创建非常复杂,可以使用原型模式快捷的创建对象。
    • 性能和安全要求比较高。

    扩展-深克隆

    使用深克隆,可以使用对象流方法。

    建造者模式

    概述

    将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。

    • 分离了部件的构造(由Builder来负责)和装配(由Director负责)。 从而可以构造出复杂的对象。这个模式适用于:某个对象的构建过程复杂的情况。
    • 由于实现了构建和装配的解耦。不同的构建器,相同的装配,也可以做出不同的对象;相同的构建器,不同的装配顺序也可以做出不同的对象。也就是实现了构建算法、装配算法的解耦,实现了更好的复用。
    • 建造者模式可以将部件和其组装过程分开,一步一步创建一个复杂的对象。用户只需要指定复杂对象的类型就可以得到该对象,而无须知道其内部的具体构造细节。

    结构

    建造者(Builder)模式包含如下角色:

    • 抽象建造者类(AbstractBuilder):这个接口规定要实现复杂对象的那些部分的创建,并不涉及具体的部件对象的创建。

    • 具体建造者类(ConcreteBuilder):实现 Builder 接口,完成复杂产品的各个部件的具体创建方法。在构造过程完成后,提供产品的实例(实现原材料生产)。

    • 产品类(Product):要创建的复杂对象(原材料)。

    • 指挥者类(Director):调用具体建造者来创建复杂对象的各个部分,在指导者中不涉及具体产品的信息,只负责保证对象各部分完整创建或按某种顺序创建(组装原材料,构成整体)。

    类图如下:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JKqtGWxM-1617951667352)(img/建造者模式.png)]

    实例

    创建共享单车

    生产自行车是一个复杂的过程,它包含了车架,车座等组件的生产。而车架又有碳纤维,铝合金等材质的,车座有橡胶,真皮等材质。对于自行车的生产就可以使用建造者模式。

    这里Bike是产品,包含车架,车座等组件;Builder是抽象建造者,MobikeBuilder和OfoBuilder是具体的建造者;Director是指挥者。类图如下:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UYnui6Yy-1617951667352)(img/建造者模式1.png)]

    优缺点

    优点:

    • 建造者模式的封装性很好。使用建造者模式可以有效的封装变化,在使用建造者模式的场景中,一般产品类和建造者类是比较稳定的,因此,将主要的业务逻辑封装在指挥者类中对整体而言可以取得比较好的稳定性。
    • 在建造者模式中,客户端不必知道产品内部组成的细节,将产品本身与产品的创建过程解耦,使得相同的创建过程可以创建不同的产品对象。
    • 可以更加精细地控制产品的创建过程 。将复杂产品的创建步骤分解在不同的方法中,使得创建过程更加清晰,也更方便使用程序来控制创建过程。
    • 建造者模式很容易进行扩展。如果有新的需求,通过实现一个新的建造者类就可以完成,基本上不用修改之前已经测试通过的代码,因此也就不会对原有功能引入风险。符合开闭原则。

    缺点:

    造者模式所创建的产品一般具有较多的共同点,其组成部分相似,如果产品之间的差异性很大,则不适合使用建造者模式,因此其使用范围受到一定的限制。

    使用场景

    建造者(Builder)模式创建的是复杂对象,其产品的各个部分经常面临着剧烈的变化,但将它们组合在一起的算法却相对稳定,所以它通常在以下场合使用。

    • 创建的对象较复杂,由多个部件构成,各部件面临着复杂的变化,但构件间的建造顺序是稳定的。
    • 创建复杂对象的算法独立于该对象的组成部分以及它们的装配方式,即产品的构建过程和最终的表示是独立的。

    创建者模式对比

    工厂方法模式VS建造者模式

    工厂方法模式注重的是整体对象的创建方式建造者模式注重的是部件构建的过程,意在通过一步一步地精确构造创建出一个复杂的对象。

    我们举个简单例子来说明两者的差异,如要制造一个超人,如果使用工厂方法模式,直接产生出来的就是一个力大无穷、能够飞翔、内裤外穿的超人;而如果使用建造者模式,则需要组装手、头、脚、躯干等部分,然后再把内裤外穿,于是一个超人就诞生了。

    抽象工厂模式VS建造者模式

    抽象工厂模式实现对产品家族的创建,一个产品家族是这样的一系列产品:具有不同分类维度的产品组合,采用抽象工厂模式则是不需要关心构建过程,只关心什么产品由什么工厂生产即可。

    建造者模式则是要求按照指定的蓝图建造产品,它的主要目的是通过组装零配件而产生一个新产品。

    如果将抽象工厂模式看成汽车配件生产工厂,生产一个产品族的产品,那么建造者模式就是一个汽车组装工厂,通过对部件的组装可以返回一辆完整的汽车。

    结构型模式

    结构型模式分为以下 7 种:

    • 代理模式
    • 适配器模式
    • 装饰者模式
    • 桥接模式
    • 外观模式
    • 组合模式
    • 享元模式

    代理模式

    概述

    由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时,访问对象不适合或者不能直接引用目标对象,代理对象作为访问对象和目标对象之间的中介。

    Java中的代理按照代理类生成时机不同又分为静态代理和动态代理。静态代理代理类在编译期就生成,而动态代理代理类则是在Java运行时动态生成。动态代理又有JDK代理和CGLib代理两种。

    结构

    代理(Proxy)模式分为三种角色:

    • 抽象主题(Subject)类(买票接口): 通过接口或抽象类声明真实主题和代理对象实现的业务方法。
    • 具体主题(Real Subject)类(具体卖票): 实现了抽象主题中的具体业务,是代理对象所代表的真实对象,是最终要引用的对象。
    • 代理(Proxy)类 : 提供了与真实主题相同的接口,其内部含有对真实主题的引用,它可以访问、控制或扩展真实主题的功能。

    静态代理

    【例】火车站卖票

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IayrLQ4E-1617951667353)(img/静态代理.png)]

    JDK动态代理

    jdk动态代理结构和静态代理一样。不同的是静态只有一个proxyPoint代理点(类似于一个代理人),而静态代理将代理点升级为ProxyFactory(类似于一个代理公司),具体代理流程在ProxyFactory里面实现。

    使用了动态代理,我们思考下面问题:

    ProxyFactory是代理类吗?

    ProxyFactory不是代理模式中所说的代理类,而代理类是程序在运行过程中动态的在内存中生成的类。

    从上面的类中,我们可以看到以下几个信息:

    • 代理类($Proxy0)实现了SellTickets。这也就印证了我们之前说的真实类和代理类实现同样的接口
    • 代理类($Proxy0)将我们提供了的匿名内部类对象传递给了父类。

    动态代理的执行流程是什么样?

    执行流程如下:

    1. 在测试类中通过代理对象调用sell()方法
    2. 根据多态的特性,执行的是代理类($Proxy0)中的sell()方法
    3. 代理类($Proxy0)中的sell()方法中又调用了InvocationHandler接口的子实现类对象的invoke方法
    4. invoke方法通过反射执行了真实对象所属类(TrainStation)中的sell()方法
    

    CGLIB动态代理

    CGLIB是一个功能强大,高性能的代码生成包。它为没有实现接口的类提供代理,为JDK的动态代理提供了很好的补充。

    CGLIB是第三方提供的包,所以需要引入jar包的坐标:

    <dependency>
        <groupId>cglib</groupId>
        
    
    下一篇:没有了