当前位置 博文首页 > 司夏的博客:数据链路层

    司夏的博客:数据链路层

    作者:[db:作者] 时间:2021-07-29 09:47

    数据链路层基本概念

    数据链路层的简单模型
    在这里插入图片描述
    数据链路层使用的信道主要有以下两种类型:

    • 点对点信道。这种信道使用一对一的点对点通信方式。
    • 广播信道。这种信道使用一对多的广播通信方式,因此过程比较复杂。广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发送。

    链路(link)是一条点到点的物理线路段,中间没有任何其他的交换结点。一条链路只是一条通路的一个组成部分。

    数据链路(data link) 除了物理线路外,还必须有通信协议来控制这些数据的传输。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。现最常用的方法是使用适配器(即网卡)来实现这些协议的硬件和软件。一般的适配器都包括了数据链路层和物理层这两层的功能。

    数据链路层传送的是帧

    常常在两个对等的数据链路层之间画出一个数字管道,而在这条数字管道上传输的数据单位是帧。
    在这里插入图片描述

    封装成帧

    封装成帧(framing)就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。确定帧的界限。首部和尾部的一个重要作用就是进行帧定界。
    在这里插入图片描述

    用字节填充法解决透明传输的问题

    在这里插入图片描述

    发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面插入一个转义字符“ESC”(其十六进制编码是 1B)。
    字节填充(byte stuffing)或字符填充(character stuffing)——接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。

    差错检测

    传输过程中可能会产生比特差错:1 可能会变成 0 而 0 也可能变成 1。在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率 BER (Bit Error Rate)。误码率与信噪比有很大的关系。为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。

    CRC差错检测技术

    仅用循环冗余检验 CRC 差错检测技术只能做到无差错接受(accept)。“无差错接受”是指:“凡是接受的帧(即不包括丢弃的帧),我们都能以非常接近于 1 的概率认为这些帧在传输过程中没有产生差错”。也就是说:“凡是接收端数据链路层接受的帧都没有传输差错”(有差错的帧就丢弃而不接受)。

    要做到“可靠传输”(即发送什么就收到什么)就必须再加上确认和重传机制。考虑:帧重复、帧丢失、帧乱序的情况

    关于CRC的更多的知识 http://blog.chinaunix.net/u2/69737/showart_1658667.html

    两种情况下的数据链路层

    使用点对点信道的数据链路层

    PPP协议

    现在全世界使用得最多的数据链路层协议是点对点协议 PPP (Point-to-Point Protocol)。用户使用拨号电话线接入因特网时,一般都是使用 PPP 协议。

    PPP协议应该满足的要求PPP协议不需要满足的要求
    简单——这是首要的要求
    封装成帧
    透明性
    多种网络层协议
    多种类型链路
    差错检测
    检测连接状态
    最大传送单元
    网络层地址协商
    数据压缩协商
    纠错
    流量控制
    序号
    多点线路
    半双工或单工链路

    PPP 协议有三个组成部分:

    • 数据链路层协议可以用于异步串行或同步串行介质。
    • 使用LCP(链路控制协议)建立并维护数据链路连接。
    • 网络控制协议(NCP)允许在点到点连接上使用多种网络层协议,如图所示。

    在这里插入图片描述
    PPP协议帧格式
    在这里插入图片描述
    标志字段 F = 0x7E (符号“0x”表示后面的字符是用十六进制表示。十六进制的 7E 的二进制表示是 01111110)。
    地址字段 A 只置为 0xFF。地址字段实际上并不起作用。
    控制字段 C 通常置为 0x03。PPP 是面向字节的,所有的 PPP 帧的长度都是整数字节。

    字节填充

    问题:信息字段中出现了标志字段的值,可能会被误认为是“标志”,怎么办?

    • 将信息字段中出现的每个 0x7E 字节转变成为 2 字节序列(0x7D, 0x5E)。
    • 若信息字段中出现一个 0x7D 的字节, 则将其转变成为 2 字节序列(0x7D, 0x5D)。
    • 若信息字段中出现 ASCII 码的控制字符(即数值小于 0x20 的字符),则在该字符前面要加入一个 0x7D 字节,同时将该字符的编码加以改变。

    零比特填充方法

    PPP 协议用在 SONET/SDH 链路时,是使用同步传输(一连串的比特连续传送)。
    这时 PPP 协议采用零比特填充方法来实现透明传输在发送端,只要发现有 5 个连续 1,则立即填入一个 0。
    接收端对帧中的比特流进行扫描。每当发现 5 个连续1时,就把这 5 个连续 1 后的一个 0 删除.

    不使用序号和确认机制

    PPP 协议之所以不使用序号和确认机制是出于以下的考虑:

    • 在数据链路层出现差错的概率不大时,使用比较简单的 PPP 协议较为合理。
    • 在因特网环境下,PPP 的信息字段放入的数据是 IP 数据报。
    • 数据链路层的可靠传输并不能够保证网络层的传输也是可靠的。帧检验序列 FCS 字段可保证无差错接受。

    PPP协议的工作状态

    • 当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。
    • PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。
    • 这些分组及其响应选择一些 PPP 参数,和进行网络层配置,NCP 给新接入的 PC机分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。
    • 通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。

    使用广播信道的数据链路层

    以太网

    最初的以太网是将许多计算机都连接到一根总线上。当初认为这样的连接方法既简单又可靠,因为总线上没有有源器件。
    在这里插入图片描述

    总线上的每一个工作的计算机都能检测到 B 发送的数据信号。 由于只有计算机 D 的地址与数据帧首部写入的地址一致,因此只有 D 才接收这个数据帧。 其他所有的计算机(A, C 和 E)都检测到不是发送给它们的数据帧,因此就丢弃这个数据帧而不能够收下来。具有广播特性的总线上实现了一对一的通信。

    以太网使用CSMA/CD协议

    CSMA/CD 表示 Carrier Sense Multiple Access with Collision Detection。

    • “多点接入”表示许多计算机以多点接入的方式连接在一根总线上。
    • “载波监听”是指每一个站在发送数据之前先要检测一下总线上是否有其他计算机在发送数据,如果有,则暂时不要发送数据,以免发生碰撞。 “载波监听”就是用电子技术检测总线上有没有其他计算机发送的数据信号。
    • “碰撞检测”就是计算机边发送数据边检测信道上的信号电压大小。
      • 当几个站同时在总线上发送数据时,总线上的信号电压摆动值将会增大(互相叠加)。
      • 当一个站检测到的信号电压摆动值超过一定的门限值时,就认为总线上至少有两个站同时在发送数据,表明产生了碰撞。所谓“碰撞”就是发生了冲突。因此“碰撞检测”也称为“冲突检测”。
      • 检测到碰撞后在发生碰撞时,总线上传输的信号产生了严重的失真,无法从中恢复出有用的信息来。每一个正在发送数据的站,一旦发现总线上出现了碰撞,就要立即停止发送,免得继续浪费网络资源,然后等待一段随机时间后再次发送。

    总结:使用 CSMA/CD 协议的以太网不能进行全双工通信而只能进行双向交替通信(半双工通信)。每个站在发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。 这种发送的不确定性使整个以太网的平均通信量远小于以太网的最高数据率。

    争用期
    最先发送数据帧的站,在发送数据帧后至多经过时间 2(两倍的端到端往返时延)就可知道发送的数据帧是否遭受了碰撞。经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞。

    以太网的争用期

    以太网的端到端往返时延 2? 称为争用期,或碰撞窗口。通常,取 51.2 ?s 为争用期的长度。
    对于 10 Mb/s 以太网,在争用期内可发送512 bit,即 64 字节。以太网在发送数据时,若前 64 字节未发生冲突,则后续的数据就不会发生冲突。

    最短有效帧长

    如果发生冲突,就一定是在发送的前 64 字节之内。 由于一检测到冲突就立即中止发送,这时已经发送出去的数据一定小于 64 字节。 以太网规定了最短有效帧长为 64 字节,凡长度小于 64 字节的帧都是由于冲突而异常中止的无效帧。

    二进制指数类型退避算法

    发生碰撞的站在停止发送数据后,要推迟(退避)一个随机时间才能再发送数据。

    以太局域网(以太网)

    以太网的两个标准

    • DIX Ethernet V2 是世界上第一个局域网产品(以太网)的规约。
    • IEEE 的 802.3 标准。DIX Ethernet V2 标准与 IEEE 的 802.3 标准只有很小的差别,因此可以将 802.3 局域网简称为“以太网”。严格说来,“以太网”应当是指符合 DIX Ethernet V2 标准的局域网

    以太网与数据链路层的两个子层

    为了使数据链路层能更好地适应多种局域网标准,802 委员会就将局域网的数据链路层拆成两个子层:

    • 逻辑链路控制 LLC (Logical Link Control)子层
    • 媒体接入控制 MAC (Medium Access Control)子层。

    与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关,不管采用何种协议的局域网对 LLC 子层来说都是透明的 。

    由于 TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层 LLC(即 802.2 标准)的作用已经不大了。很多厂商生产的适配器上就仅装有 MAC 协议而没有 LLC 协议。

    以太网提供的服务

    • 以太网提供的服务是不可靠的交付,即尽最大努力的交付。
    • 当接收站收到有差错的数据帧时就丢弃此帧,其他什么也不做。差错的纠正由高层来决定。
    • 如果高层发现丢失了一些数据而进行重传,但以太网并不知道这是一个重传的帧,而是当作一个新的数据帧来发送。

    MAC层的硬件地址(MAC地址)

    在局域网中,硬件地址又称为物理地址,或 MAC 地址。 802 标准所说的“地址”严格地讲应当是每一个站的“名字”或标识符。

    • IEEE 的注册管理机构 RA 负责向厂家分配地址字段的前三个字节(即高位 24 位)。
    • 地址字段中的后三个字节(即低位 24 位)由厂家自行指派,称为扩展标识符,必须保证生产出的适配器没有重复地址。
    • 一个地址块可以生成224个不同的地址。这种 48 位地址称为 MAC-48,它的通用名称是EUI-48。
    • “MAC地址”实际上就是适配器地址或适配器标识符EUI-48。

    适配器检查 MAC 地址

    适配器从网络上每收到一个 MAC 帧就首先用硬件检查 MAC 帧中的 MAC 地址.如果是发往本站的帧则收下,然后再进行其他的处理。否则就将此帧丢弃,不再进行其他的处理。

    “发往本站的帧”包括以下三种帧: 单播(unicast)帧(一对一)广播(broadcast)帧(一对全体)多播(multicast)帧(一对多)

    MAC帧格式
    在这里插入图片描述
    在帧的前面插入的 8 字节中的第一个字段共 7 个字节,是前同步码,用来迅速实现 MAC 帧的比特同步。第二个字段是帧开始定界符,表示后面的信息就是MAC 帧。

    类型字段用来标志上一层使用的是什么协议,以便把收到的 MAC 帧的数据上交给上一层的这个协议。

    数据字段的正式名称是 MAC 客户数据字段最小长度 64 字节 - 18 字节的首部和尾部 = 数据字段的最小长度 。当数据字段的长度小于 46 字节时,应在数据字段的后面加入整数字节的填充字段,以保证以太网的 MAC 帧长不小于 64 字节。

    无效的 MAC 帧

    • 帧的长度不是整数个字节;
    • 用收到的帧检验序列 FCS 查出有差错;
    • 数据字段的长度不在 46 ~ 1500 字节之间。
    • 有效的 MAC 帧长度为 64 ~ 1518 字节之间。
    • 对于检查出的无效 MAC 帧就简单地丢弃。以太网不负责重传丢弃的帧。

    网桥

    在数据链路层扩展局域网是使用网桥。 网桥工作在数据链路层,它根据 MAC 帧的目的地址对收到的帧进行转发。网桥具有过滤帧的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的 MAC 地址,然后再确定将该帧转发到哪一个接口

    在这里插入图片描述
    使用网桥扩展以太网:好与坏

    过滤通信量
    扩大了物理范围
    提高了可靠性
    可互连不同物理层、不同 MAC 子层和不同速率(如10 Mb/s 和 100 Mb/s 以太网)的局域网
    存储转发增加了时延
    在MAC 子层并没有流量控制功能
    具有不同 MAC 子层的网段桥接在一起时时延更大
    网桥只适合于用户数不太多(不超过几百个)和通信量不太大的局域网,否则有时还会因传播过多的广播信息而产生网络拥塞。这就是所谓的广播风暴。

    高速以太网

    在这里插入图片描述

    cs
    下一篇:没有了