当前位置 主页 > 网站技术 > 代码类 >

    使用TensorFlow-Slim进行图像分类的实现

    栏目:代码类 时间:2019-12-31 12:09

    参考 https://github.com/tensorflow/models/tree/master/slim

    使用TensorFlow-Slim进行图像分类

    准备

    安装TensorFlow

    参考 https://www.tensorflow.org/install/

    如在Ubuntu下安装TensorFlow with GPU support, python 2.7版本

    wget https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl
    pip install tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl

    下载TF-slim图像模型库

    cd $WORKSPACE
    git clone https://github.com/tensorflow/models/
    
    

    准备数据

    有不少公开数据集,这里以官网提供的Flowers为例。

    官网提供了下载和转换数据的代码,为了理解代码并能使用自己的数据,这里参考官方提供的代码进行修改。

    cd $WORKSPACE/data
    wget http://download.tensorflow.org/example_images/flower_photos.tgz
    tar zxf flower_photos.tgz
    
    

    数据集文件夹结构如下:

    flower_photos
    ├── daisy
    │  ├── 100080576_f52e8ee070_n.jpg
    │  └── ...
    ├── dandelion
    ├── LICENSE.txt
    ├── roses
    ├── sunflowers
    └── tulips
    
    

    由于实际情况中我们自己的数据集并不一定把图片按类别放在不同的文件夹里,故我们生成list.txt来表示图片路径与标签的关系。

    Python代码:

    import os
    
    class_names_to_ids = {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}
    data_dir = 'flower_photos/'
    output_path = 'list.txt'
    
    fd = open(output_path, 'w')
    for class_name in class_names_to_ids.keys():
      images_list = os.listdir(data_dir + class_name)
      for image_name in images_list:
        fd.write('{}/{} {}\n'.format(class_name, image_name, class_names_to_ids[class_name]))
    
    fd.close()
    
    

    为了方便后期查看label标签,也可以定义labels.txt:

    daisy
    dandelion
    roses
    sunflowers
    tulips
    
    

    随机生成训练集与验证集:

    Python代码:

    import random
    
    _NUM_VALIDATION = 350
    _RANDOM_SEED = 0
    list_path = 'list.txt'
    train_list_path = 'list_train.txt'
    val_list_path = 'list_val.txt'
    
    fd = open(list_path)
    lines = fd.readlines()
    fd.close()
    random.seed(_RANDOM_SEED)
    random.shuffle(lines)
    
    fd = open(train_list_path, 'w')
    for line in lines[_NUM_VALIDATION:]:
      fd.write(line)
    
    fd.close()
    fd = open(val_list_path, 'w')
    for line in lines[:_NUM_VALIDATION]:
      fd.write(line)
    
    fd.close()
    
    

    生成TFRecord数据:

    Python代码:

    import sys
    sys.path.insert(0, '../models/slim/')
    from datasets import dataset_utils
    import math
    import os
    import tensorflow as tf
    
    def convert_dataset(list_path, data_dir, output_dir, _NUM_SHARDS=5):
      fd = open(list_path)
      lines = [line.split() for line in fd]
      fd.close()
      num_per_shard = int(math.ceil(len(lines) / float(_NUM_SHARDS)))
      with tf.Graph().as_default():
        decode_jpeg_data = tf.placeholder(dtype=tf.string)
        decode_jpeg = tf.image.decode_jpeg(decode_jpeg_data, channels=3)
        with tf.Session('') as sess:
          for shard_id in range(_NUM_SHARDS):
            output_path = os.path.join(output_dir,
              'data_{:05}-of-{:05}.tfrecord'.format(shard_id, _NUM_SHARDS))
            tfrecord_writer = tf.python_io.TFRecordWriter(output_path)
            start_ndx = shard_id * num_per_shard
            end_ndx = min((shard_id + 1) * num_per_shard, len(lines))
            for i in range(start_ndx, end_ndx):
              sys.stdout.write('\r>> Converting image {}/{} shard {}'.format(
                i + 1, len(lines), shard_id))
              sys.stdout.flush()
              image_data = tf.gfile.FastGFile(os.path.join(data_dir, lines[i][0]), 'rb').read()
              image = sess.run(decode_jpeg, feed_dict={decode_jpeg_data: image_data})
              height, width = image.shape[0], image.shape[1]
              example = dataset_utils.image_to_tfexample(
                image_data, b'jpg', height, width, int(lines[i][1]))
              tfrecord_writer.write(example.SerializeToString())
            tfrecord_writer.close()
      sys.stdout.write('\n')
      sys.stdout.flush()
    
    os.system('mkdir -p train')
    convert_dataset('list_train.txt', 'flower_photos', 'train/')
    os.system('mkdir -p val')
    convert_dataset('list_val.txt', 'flower_photos', 'val/')