某天气网站(www.数字.com)存有2011年至今的天气数据,有天看到一本爬虫教材提到了爬取这些数据的方法,学习之,并加以改进。
准备爬的历史天气
爬之前先分析url。左上有年份、月份的下拉选择框,按F12,进去看看能否找到真正的url:
很容易就找到了,左边是储存月度数据的js文件,右边是文件源代码,貌似json格式。
双击左边js文件,地址栏内出现了url:http://tianqi.数字.com/t/wea_history/js/54511_20161.js
url中的“54511”是城市代码,“20161”是年份和月份代码。下一步就是找到城市代码列表,按城市+年份+月份构造url列表,就能开始遍历爬取了。
城市代码也很诚实,很快就找到了:
下一步得把城市名称和代码提取出来,构造一个“城市名称:城市代码”的字典,或者由元组(城市名称,城市代码)组成的列表,供爬取时遍历。考虑到正则提取时,构造元组更便捷,就不做成字典了。
def getCity(): html = reqs.get('https://tianqi.2345.com/js/citySelectData.js').content text = html.decode('gbk') city = re.findall('([1-5]\d{4})\-[A-Z]\s(.*?)\-\d{5}',text) #只提取了地级市及以上城市的名称和代码,5以上的是县级市 city = list(set(city)) #去掉重复城市数据 print('城市列表获取成功') return city
接下来是构造url列表,感谢教材主编的提醒,这里避免了一个大坑。原来2017年之前的url结构和后面的不一样,在这里照搬了主编的构造方法:
def getUrls(cityCode): urls = [] for year in range(2011,2020): if year <= 2016: for month in range(1, 13): urls.append('https://tianqi.数字.com/t/wea_history/js/%s_%s%s.js' % (cityCode,year, month)) else: for month in range(1,13): if month<10: urls.append('https://tianqi.数字.com/t/wea_history/js/%s0%s/%s_%s0%s.js' %(year,month,cityCode,year,month)) else: urls.append('https://tianqi.数字.com/t/wea_history/js/%s%s/%s_%s%s.js' %(year,month,cityCode,year,month)) return urls
接下来定义一个爬取页面的函数getHtml(),这个是常规操作,用requests模块就行了:
def getHtml(url): header = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0) Gecko/20100101 Firefox/14.0.1', 'Referer': '******'} request = reqs.get(url,headers = header) text = request.content.decode('gbk') #经试解析,这里得用gbk模式 time.sleep(random.randint(1,3)) #随机暂停,减轻服务器压力 return text
然后就是重点部分了,数据解析与提取。
试了试json解析,发现效果不好,因为页面文本里面含杂质。
还是用正则表达式吧,能够提取有效数据,尽可能少浪费机器时间。
2016年开始的数据和之前年份不一样,多了PM2.5污染物情况,因此构造正则表达式时,还不能用偷懒模式。
str1 = "{ymd:'(.*?)',bWendu:'(.*?)℃',yWendu:'(.*?)℃',tianqi:'(.*?)',fengxiang:'(.*?)',fengli:'(.*?)',aqi:'(.*?)',aqiInfo:'(.*?)',aqiLevel:'(.*?)'.*?}" str2 = "{ymd:'(.*?)',bWendu:'(.*?)℃',yWendu:'(.*?)℃',tianqi:'(.*?)',fengxiang:'(.*?)',fengli:'(.*?)'.*?}" #这个就是偷懒模式,取出来的内容直接存入元组中