当前位置 主页 > 网站技术 > 代码类 >

    使用pytorch实现可视化中间层的结果

    栏目:代码类 时间:2019-12-30 12:09

    摘要

    一直比较想知道图片经过卷积之后中间层的结果,于是使用pytorch写了一个脚本查看,先看效果

    这是原图,随便从网上下载的一张大概224*224大小的图片,如下

    网络介绍

    我们使用的VGG16,包含RULE层总共有30层可以可视化的结果,我们把这30层分别保存在30个文件夹中,每个文件中根据特征的大小保存了64~128张图片

    结果如下:

    原图大小为224224,经过第一层后大小为64224*224,下面是第一层可视化的结果,总共有64张这样的图片:

    下面看看第六层的结果

    这层的输出大小是 1128112*112,总共有128张这样的图片

    下面是完整的代码

    import cv2
    import numpy as np
    import torch
    from torch.autograd import Variable
    from torchvision import models
    
    #创建30个文件夹
    def mkdir(path): # 判断是否存在指定文件夹,不存在则创建
      # 引入模块
      import os
    
      # 去除首位空格
      path = path.strip()
      # 去除尾部 \ 符号
      path = path.rstrip("\\")
    
      # 判断路径是否存在
      # 存在   True
      # 不存在  False
      isExists = os.path.exists(path)
    
      # 判断结果
      if not isExists:
        # 如果不存在则创建目录
        # 创建目录操作函数
        os.makedirs(path)
        return True
      else:
    
        return False
    
    
    def preprocess_image(cv2im, resize_im=True):
      """
        Processes image for CNNs
    
      Args:
        PIL_img (PIL_img): Image to process
        resize_im (bool): Resize to 224 or not
      returns:
        im_as_var (Pytorch variable): Variable that contains processed float tensor
      """
      # mean and std list for channels (Imagenet)
      mean = [0.485, 0.456, 0.406]
      std = [0.229, 0.224, 0.225]
      # Resize image
      if resize_im:
        cv2im = cv2.resize(cv2im, (224, 224))
      im_as_arr = np.float32(cv2im)
      im_as_arr = np.ascontiguousarray(im_as_arr[..., ::-1])
      im_as_arr = im_as_arr.transpose(2, 0, 1) # Convert array to D,W,H
      # Normalize the channels
      for channel, _ in enumerate(im_as_arr):
        im_as_arr[channel] /= 255
        im_as_arr[channel] -= mean[channel]
        im_as_arr[channel] /= std[channel]
      # Convert to float tensor
      im_as_ten = torch.from_numpy(im_as_arr).float()
      # Add one more channel to the beginning. Tensor shape = 1,3,224,224
      im_as_ten.unsqueeze_(0)
      # Convert to Pytorch variable
      im_as_var = Variable(im_as_ten, requires_grad=True)
      return im_as_var
    
    
    class FeatureVisualization():
      def __init__(self,img_path,selected_layer):
        self.img_path=img_path
        self.selected_layer=selected_layer
        self.pretrained_model = models.vgg16(pretrained=True).features
        #print( self.pretrained_model)
      def process_image(self):
        img=cv2.imread(self.img_path)
        img=preprocess_image(img)
        return img
    
      def get_feature(self):
        # input = Variable(torch.randn(1, 3, 224, 224))
        input=self.process_image()
        print("input shape",input.shape)
        x=input
        for index,layer in enumerate(self.pretrained_model):
          #print(index)
          #print(layer)
          x=layer(x)
          if (index == self.selected_layer):
            return x
    
      def get_single_feature(self):
        features=self.get_feature()
        print("features.shape",features.shape)
        feature=features[:,0,:,:]
        print(feature.shape)
        feature=feature.view(feature.shape[1],feature.shape[2])
        print(feature.shape)
        return features
    
      def save_feature_to_img(self):
        #to numpy
        features=self.get_single_feature()
        for i in range(features.shape[1]):
          feature = features[:, i, :, :]
          feature = feature.view(feature.shape[1], feature.shape[2])
          feature = feature.data.numpy()
          # use sigmod to [0,1]
          feature = 1.0 / (1 + np.exp(-1 * feature))
          # to [0,255]
          feature = np.round(feature * 255)
          print(feature[0])
          mkdir('./feature/' + str(self.selected_layer))
          cv2.imwrite('./feature/'+ str( self.selected_layer)+'/' +str(i)+'.jpg', feature)
    if __name__=='__main__':
      # get class
      for k in range(30):
        myClass=FeatureVisualization('/home/lqy/examples/TRP.PNG',k)
        print (myClass.pretrained_model)
        myClass.save_feature_to_img()