当前位置 主页 > 网站技术 > 代码类 >

    关于python中plt.hist参数的使用详解

    栏目:代码类 时间:2019-11-28 18:05

    如下所示:

     matplotlib.pyplot.hist( 
      x, bins=10, range=None, normed=False,  
      weights=None, cumulative=False, bottom=None,  
      histtype=u'bar', align=u'mid', orientation=u'vertical',  
      rwidth=None, log=False, color=None, label=None, stacked=False,  
      hold=None, **kwargs) 

    x : (n,) array or sequence of (n,) arrays

    这个参数是指定每个bin(箱子)分布的数据,对应x轴

    bins : integer or array_like, optional

    这个参数指定bin(箱子)的个数,也就是总共有几条条状图

    normed : boolean, optional

    If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)

    这个参数指定密度,也就是每个条状图的占比例比,默认为1

    color : color or array_like of colors or None, optional

    这个指定条状图的颜色

    我们绘制一个10000个数据的分布条状图,共50份,以统计10000分的分布情况

      """ 
      Demo of the histogram (hist) function with a few features. 
       
      In addition to the basic histogram, this demo shows a few optional features: 
       
        * Setting the number of data bins 
        * The ``normed`` flag, which normalizes bin heights so that the integral of 
         the histogram is 1. The resulting histogram is a probability density. 
        * Setting the face color of the bars 
        * Setting the opacity (alpha value). 
       
      """ 
      import numpy as np 
      import matplotlib.mlab as mlab 
      import matplotlib.pyplot as plt 
       
       
      # example data 
      mu = 100 # mean of distribution 
      sigma = 15 # standard deviation of distribution 
      x = mu + sigma * np.random.randn(10000) 
       
      num_bins = 50 
      # the histogram of the data 
      n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5) 
      # add a 'best fit' line 
      y = mlab.normpdf(bins, mu, sigma) 
      plt.plot(bins, y, 'r--') 
      plt.xlabel('Smarts') 
      plt.ylabel('Probability') 
      plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$') 
       
      # Tweak spacing to prevent clipping of ylabel 
      plt.subplots_adjust(left=0.15) 
      plt.show() 

    以上这篇关于python中plt.hist参数的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持IIS7站长之家。