当前位置 主页 > 服务器问题 > Linux/apache问题 >

    python cv2在验证码识别中应用实例解析

    栏目:Linux/apache问题 时间:2019-12-26 09:03

    这篇文章主要介绍了python cv2在验证码识别中应用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

    使用函数cv2.imread(filepath,flags)读入一副图片

    filepath:要读入图片的完整路径

    flags:读入图片的标志

    cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 cv2.cvtColor(p1,p2) 是颜色空间转换函数,p1是需要转换的图片,p2是转换成何种格式。 cv2.COLOR_BGR2RGB 将BGR格式转换成RGB格式 cv2.COLOR_BGR2GRAY 将BGR格式转换成灰度图片

    模版匹配

    模板匹配的原理其实很简单,就是不断地在原图中移动模板图像去比较

    有6种匹配方法

    平方差匹配CV_TM_SQDIFF:用两者的平方差来匹配,最好的匹配值为0 归一化平方差匹配CV_TM_SQDIFF_NORMED 相关匹配CV_TM_CCORR:用两者的乘积匹配,数值越大表明匹配程度越好 归一化相关匹配CV_TM_CCORR_NORMED 相关系数匹配CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美的匹配,-1表示最差的匹配 归一化相关系数匹配CV_TM_CCOEFF_NORMED
      import cv2
      def findpic(self, target='background.png', template='slider.png'):
        """
        :param target: 背景图路径
        :param template: 滑块图片路径
        :return: 
        """
        target_rgb = cv2.imread(target)
        target_gray = cv2.cvtColor(target_rgb, cv2.COLOR_BGR2GRAY)
        template_rgb = cv2.imread(template, 0)
        res = cv2.matchTemplate(target_gray, template_rgb, cv2.TM_CCOEFF_NORMED) #模板匹配,在大图中找小图
        value = cv2.minMaxLoc(res)
        a, b, c, d = value
        if abs(a) >= abs(b):
          distance = c[0]
        else:
          distance = d[0]
        print(value)
        return distance

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持IIS7站长之家。