作为新手来说,这是一个最简单的人脸识别模型,难度不大,代码量也不算多,下面就逐一来讲解,数据集的准备就不多说了,因人而异。
一. 获取数据集的所有路径
利用os模块来生成一个包含所有数据路径的list
def my_face(): path = os.listdir("./my_faces") image_path = [os.path.join("./my_faces/",img) for img in path] return image_path def other_face(): path = os.listdir("./other_faces") image_path = [os.path.join("./other_faces/",img) for img in path] return image_path image_path = my_face().__add__(other_face()) #将两个list合并成为一个list
二. 构造标签
标签的构造较为简单,1表示本人,0表示其他人。
label_my= [1 for i in my_face()] label_other = [0 for i in other_face()] label = label_my.__add__(label_other) #合并两个list
三.构造数据集
利用tf.data.Dataset.from_tensor_slices()构造数据集,
def preprocess(x,y): x = tf.io.read_file(x) #读取数据 x = tf.image.decode_jpeg(x,channels=3) #解码成jpg格式的数据 x = tf.cast(x,tf.float32) / 255.0 #归一化 y = tf.convert_to_tensor(y) #转成tensor return x,y data = tf.data.Dataset.from_tensor_slices((image_path,label)) data_loader = data.repeat().shuffle(5000).map(preprocess).batch(128).prefetch(1)
四.构造模型
class CNN_WORK(Model): def __init__(self): super(CNN_WORK,self).__init__() self.conv1 = layers.Conv2D(32,kernel_size=5,activation=tf.nn.relu) self.maxpool1 = layers.MaxPool2D(2,strides=2) self.conv2 = layers.Conv2D(64,kernel_size=3,activation=tf.nn.relu) self.maxpool2 = layers.MaxPool2D(2,strides=2) self.flatten = layers.Flatten() self.fc1 = layers.Dense(1024) self.dropout = layers.Dropout(rate=0.5) self.out = layers.Dense(2) def call(self,x,is_training=False): x = self.conv1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.flatten(x) x = self.fc1(x) x = self.dropout(x,training=is_training) x = self.out(x) if not is_training: x = tf.nn.softmax(x) return x model = CNN_WORK()
五.定义损失函数,精度函数,优化函数
def cross_entropy_loss(x,y): y = tf.cast(y,tf.int64) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=x) return tf.reduce_mean(loss) def accuracy(y_pred,y_true): correct_pred = tf.equal(tf.argmax(y_pred,1),tf.cast(y_true,tf.int64)) return tf.reduce_mean(tf.cast(correct_pred,tf.float32),axis=-1) optimizer = tf.optimizers.SGD(0.002)
六.开始跑步我们的模型
def run_optimizer(x,y): with tf.GradientTape() as g: pred = model(x,is_training=True) loss = cross_entropy_loss(pred,y) training_variabel = model.trainable_variables gradient = g.gradient(loss,training_variabel) optimizer.apply_gradients(zip(gradient,training_variabel)) model.save_weights("face_weight") #保存模型