当前位置 主页 > 网站技术 > 代码类 >

    结合OpenCV与TensorFlow进行人脸识别的实现

    栏目:代码类 时间:2019-10-24 18:04

    作为新手来说,这是一个最简单的人脸识别模型,难度不大,代码量也不算多,下面就逐一来讲解,数据集的准备就不多说了,因人而异。

    一. 获取数据集的所有路径

    利用os模块来生成一个包含所有数据路径的list

    def my_face():
      path = os.listdir("./my_faces")
      image_path = [os.path.join("./my_faces/",img) for img in path]
      return image_path
    def other_face():
      path = os.listdir("./other_faces")
      image_path = [os.path.join("./other_faces/",img) for img in path]
      return image_path
    image_path = my_face().__add__(other_face())  #将两个list合并成为一个list

    二. 构造标签

    标签的构造较为简单,1表示本人,0表示其他人。

    label_my= [1 for i in my_face()]
     label_other = [0 for i in other_face()]
     label = label_my.__add__(label_other)       #合并两个list

    三.构造数据集

    利用tf.data.Dataset.from_tensor_slices()构造数据集,

    def preprocess(x,y):
      x = tf.io.read_file(x)  #读取数据
      x = tf.image.decode_jpeg(x,channels=3) #解码成jpg格式的数据
      x = tf.cast(x,tf.float32) / 255.0   #归一化
      y = tf.convert_to_tensor(y)				#转成tensor
      return x,y
    
    data = tf.data.Dataset.from_tensor_slices((image_path,label))
    data_loader = data.repeat().shuffle(5000).map(preprocess).batch(128).prefetch(1)

    四.构造模型

    class CNN_WORK(Model):
      def __init__(self):
        super(CNN_WORK,self).__init__()
        self.conv1 = layers.Conv2D(32,kernel_size=5,activation=tf.nn.relu)
        self.maxpool1 = layers.MaxPool2D(2,strides=2)
        
        self.conv2 = layers.Conv2D(64,kernel_size=3,activation=tf.nn.relu)
        self.maxpool2 = layers.MaxPool2D(2,strides=2)
        
        self.flatten = layers.Flatten()
        self.fc1 = layers.Dense(1024)
        self.dropout = layers.Dropout(rate=0.5)
        self.out = layers.Dense(2)
      
      def call(self,x,is_training=False):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.dropout(x,training=is_training)
        x = self.out(x)
      
        
        if not is_training:
          x = tf.nn.softmax(x)
        return x
    model = CNN_WORK()

    在这里插入图片描述

    五.定义损失函数,精度函数,优化函数

    def cross_entropy_loss(x,y):
      y = tf.cast(y,tf.int64)
      loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=x)
      return tf.reduce_mean(loss)
    
    def accuracy(y_pred,y_true):
      correct_pred = tf.equal(tf.argmax(y_pred,1),tf.cast(y_true,tf.int64))
      return tf.reduce_mean(tf.cast(correct_pred,tf.float32),axis=-1)
    optimizer = tf.optimizers.SGD(0.002)  

    六.开始跑步我们的模型

    def run_optimizer(x,y):
      with tf.GradientTape() as g:
        pred = model(x,is_training=True)
        loss = cross_entropy_loss(pred,y)
      training_variabel = model.trainable_variables
      gradient = g.gradient(loss,training_variabel)
      optimizer.apply_gradients(zip(gradient,training_variabel))
    model.save_weights("face_weight") #保存模型