当前位置 主页 > 网站技术 > 代码类 >

    python保存log日志,实现用log日志画图

    栏目:代码类 时间:2019-12-24 15:10

    在神经网络训练中,我们常常需要画出loss function的变化图,log日志里会显示每一次迭代的loss function的值,于是我们先把log日志保存为log.txt文档,再利用这个文档来画图。   

    1,先来产生一个log日志。

    import mxnet as mx
    import numpy as np
    import os
    import logging
    logging.getLogger().setLevel(logging.DEBUG)
    
    # Training data
    logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存为log.txt
    train_data = np.random.uniform(0, 1, [100, 2])
    train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)])
    batch_size = 1
    num_epoch=5
    # Evaluation Data
    eval_data = np.array([[7,2],[6,10],[12,2]])
    eval_label = np.array([11,26,16])
    train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label')
    eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
    X = mx.sym.Variable('data')
    Y = mx.sym.Variable('lin_reg_label')
    fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1)
    lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro")
    model = mx.mod.Module(
      symbol = lro ,
      data_names=['data'],
      label_names = ['lin_reg_label'] # network structure
    )
    model.fit(train_iter, eval_iter,
          optimizer_params={'learning_rate':0.005, 'momentum': 0.9},
          num_epoch=20,
          eval_metric='mse',)
    model.predict(eval_iter).asnumpy()
    metric = mx.metric.MSE()
    model.score(eval_iter, metric)

    上面的代码中logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存为log.txt 就是把log日志保存为log.txt文件。   

    2,log.txt文档如下。

    INFO:root:Epoch[0] Train-mse=0.470638
    INFO:root:Epoch[0] Time cost=0.047
    INFO:root:Epoch[0] Validation-mse=73.642301
    INFO:root:Epoch[1] Train-mse=0.082987
    INFO:root:Epoch[1] Time cost=0.047
    INFO:root:Epoch[1] Validation-mse=41.625072
    INFO:root:Epoch[2] Train-mse=0.044817
    INFO:root:Epoch[2] Time cost=0.063
    INFO:root:Epoch[2] Validation-mse=23.743375
    INFO:root:Epoch[3] Train-mse=0.024459
    INFO:root:Epoch[3] Time cost=0.063
    INFO:root:Epoch[3] Validation-mse=13.511120
    INFO:root:Epoch[4] Train-mse=0.013431
    INFO:root:Epoch[4] Time cost=0.063
    INFO:root:Epoch[4] Validation-mse=7.670062
    INFO:root:Epoch[5] Train-mse=0.007408
    INFO:root:Epoch[5] Time cost=0.063
    INFO:root:Epoch[5] Validation-mse=4.344374
    INFO:root:Epoch[6] Train-mse=0.004099
    INFO:root:Epoch[6] Time cost=0.063
    INFO:root:Epoch[6] Validation-mse=2.455608
    INFO:root:Epoch[7] Train-mse=0.002274
    INFO:root:Epoch[7] Time cost=0.062
    INFO:root:Epoch[7] Validation-mse=1.385449
    INFO:root:Epoch[8] Train-mse=0.001263
    INFO:root:Epoch[8] Time cost=0.063
    INFO:root:Epoch[8] Validation-mse=0.780387
    INFO:root:Epoch[9] Train-mse=0.000703
    INFO:root:Epoch[9] Time cost=0.063
    INFO:root:Epoch[9] Validation-mse=0.438943
    INFO:root:Epoch[10] Train-mse=0.000391
    INFO:root:Epoch[10] Time cost=0.125
    INFO:root:Epoch[10] Validation-mse=0.246581
    INFO:root:Epoch[11] Train-mse=0.000218
    INFO:root:Epoch[11] Time cost=0.047
    INFO:root:Epoch[11] Validation-mse=0.138368
    INFO:root:Epoch[12] Train-mse=0.000121
    INFO:root:Epoch[12] Time cost=0.047
    INFO:root:Epoch[12] Validation-mse=0.077573
    INFO:root:Epoch[13] Train-mse=0.000068
    INFO:root:Epoch[13] Time cost=0.063
    INFO:root:Epoch[13] Validation-mse=0.043454
    INFO:root:Epoch[14] Train-mse=0.000038
    INFO:root:Epoch[14] Time cost=0.063
    INFO:root:Epoch[14] Validation-mse=0.024325
    INFO:root:Epoch[15] Train-mse=0.000021
    INFO:root:Epoch[15] Time cost=0.063
    INFO:root:Epoch[15] Validation-mse=0.013609
    INFO:root:Epoch[16] Train-mse=0.000012
    INFO:root:Epoch[16] Time cost=0.063
    INFO:root:Epoch[16] Validation-mse=0.007610
    INFO:root:Epoch[17] Train-mse=0.000007
    INFO:root:Epoch[17] Time cost=0.063
    INFO:root:Epoch[17] Validation-mse=0.004253
    INFO:root:Epoch[18] Train-mse=0.000004
    INFO:root:Epoch[18] Time cost=0.063
    INFO:root:Epoch[18] Validation-mse=0.002376
    INFO:root:Epoch[19] Train-mse=0.000002
    INFO:root:Epoch[19] Time cost=0.063
    INFO:root:Epoch[19] Validation-mse=0.001327