当前位置 主页 > 网站技术 > 代码类 >

    在Tensorflow中实现梯度下降法更新参数值

    栏目:代码类 时间:2020-01-23 21:07

    我就废话不多说了,直接上代码吧!

    tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

    TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10]))

    为Variable的参数。

    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])

    也可以使用var_list参数来定义更新那些参数的值

    #导入Minst数据集
    import input_data
    mnist = input_data.read_data_sets("data",one_hot=True)
     
    #导入tensorflow库
    import tensorflow as tf
     
    #输入变量,把28*28的图片变成一维数组(丢失结构信息)
    x = tf.placeholder("float",[None,784])
     
    #权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
    w = tf.Variable(tf.zeros([784,10]))
    #偏置
    b = tf.Variable(tf.zeros([10]))
     
    #核心运算,其实就是softmax(x*w+b)
    y = tf.nn.softmax(tf.matmul(x,w) + b)
     
    #这个是训练集的正确结果
    y_ = tf.placeholder("float",[None,10])
     
    #交叉熵,作为损失函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
     
    #梯度下降算法,最小化交叉熵
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
     
    #初始化,在run之前必须进行的
    init = tf.initialize_all_variables()
    #创建session以便运算
    sess = tf.Session()
    sess.run(init)
     
    #迭代1000次
    for i in range(1000):
     #获取训练数据集的图片输入和正确表示数字
     batch_xs, batch_ys = mnist.train.next_batch(100)
     #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
     sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
     
    #tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
    #这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
    #1代表正确,0代表错误
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
     
    #tf.cast先将数据转换成float,防止求平均不准确。
    #tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    #输出
    print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

    计算结果如下

    "C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
    Extracting data\train-images-idx3-ubyte.gz
    Extracting data\train-labels-idx1-ubyte.gz
    Extracting data\t10k-images-idx3-ubyte.gz
    Extracting data\t10k-labels-idx1-ubyte.gz
    WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
    Instructions for updating:
    Use `tf.global_variables_initializer` instead.
    2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
    2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    0.9163
     
    Process finished with exit code 0