当前位置 主页 > 服务器问题 > Linux/apache问题 >

    opencv-python 提取sift特征并匹配的实例

    栏目:Linux/apache问题 时间:2019-12-10 16:24

    我就废话不多说,直接上代码吧!

    # -*- coding: utf-8 -*-
    import cv2
    import numpy as np
    from find_obj import filter_matches,explore_match
    from matplotlib import pyplot as plt
     
    def getSift():
      '''
      得到并查看sift特征
      '''
      img_path1 = '../../data/home.jpg'
      #读取图像
      img = cv2.imread(img_path1)
      #转换为灰度图
      gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
      #创建sift的类
      sift = cv2.SIFT()
      #在图像中找到关键点 也可以一步计算#kp, des = sift.detectAndCompute
      kp = sift.detect(gray,None)
      print type(kp),type(kp[0])
      #Keypoint数据类型分析 /uploads/cj/201912/4041399.html',img)
      plt.imshow(img),plt.show()
     
    def matchSift():
      '''
      匹配sift特征
      '''
      img1 = cv2.imread('../../data/box.png', 0) # queryImage
      img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
      sift = cv2.SIFT()
      kp1, des1 = sift.detectAndCompute(img1, None)
      kp2, des2 = sift.detectAndCompute(img2, None)
      # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
      bf = cv2.BFMatcher()
      #返回k个最佳匹配
      matches = bf.knnMatch(des1, des2, k=2)
      # cv2.drawMatchesKnn expects list of lists as matches.
      #opencv2.4.13没有drawMatchesKnn函数,需要将opencv2.4.13\sources\samples\python2下的common.py和find_obj文件放入当前目录,并导入
      p1, p2, kp_pairs = filter_matches(kp1, kp2, matches)
      explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image
      cv2.waitKey()
      cv2.destroyAllWindows()
     
    def matchSift3():
      '''
      匹配sift特征
      '''
      img1 = cv2.imread('../../data/box.png', 0) # queryImage
      img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage
      sift = cv2.SIFT()
      kp1, des1 = sift.detectAndCompute(img1, None)
      kp2, des2 = sift.detectAndCompute(img2, None)
      # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)
      bf = cv2.BFMatcher()
      #返回k个最佳匹配
      matches = bf.knnMatch(des1, des2, k=2)
      # cv2.drawMatchesKnn expects list of lists as matches.
      #opencv3.0有drawMatchesKnn函数
      # Apply ratio test
      # 比值测试,首先获取与A 距离最近的点B(最近)和C(次近),只有当B/C
      # 小于阈值时(0.75)才被认为是匹配,因为假设匹配是一一对应的,真正的匹配的理想距离为0
      good = []
      for m, n in matches:
        if m.distance < 0.75 * n.distance:
          good.append([m])
      img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2)
      cv2.drawm
      plt.imshow(img3), plt.show()
     
    matchSift()
    

    以上这篇opencv-python 提取sift特征并匹配的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持IIS7站长之家。