引言
在介绍布隆过滤器之前我们首先引入几个场景。
场景一
在一个高并发的计数系统中,如果一个key没有计数,此时我们应该返回0,但是访问的key不存在,相当于每次访问缓存都不起作用了。那么如何避免频繁访问数量为0的key而导致的缓存被击穿?
有人说, 将这个key的值置为0存入缓存不就行了吗?确实,这是一个好的方案。大部分情况我们都是这样做的,当访问一个不存在的key的时候,设置一个带有过期时间的标志,然后放入缓存。不过这样做的缺点也很明显,浪费内存和无法抵御随机key攻击。
场景二
在一个黑名单系统中,我们需要设置很多黑名单内容。比如一个邮件系统,我们需要设置黑名单用户,当判断垃圾邮件的时候,要怎么去做。比如爬虫系统,我们要记录下来已经访问过的链接避免下次访问重复的链接。
在邮件很少或者用户很少的情况下,我们用普通数据库自带的查询就能完成。在数据量太多的时候,为了保证速度,通常情况下我们会将结果缓存到内存中,数据结构用hash表。这种查找的速度是O(1),但是内存消耗也是惊人的。打个比方,假如我们要存10亿条数据,每条数据平均占据32个字节,那么需要的内存是64G,这已经是一个惊人的大小了。
一种解决思路
能不能有一种思路,查询的速度是O(1),消耗内存特别小呢?前辈门早就想出了一个很好的解决方案。由于上面说的场景判断的结果只有两种状态(是或者不是,存在或者不存在),那么对于所存的数据完全可以用位来表示!数据本身则可以通过一个hash函数计算出一个key,这个key是一个位置,而这个key所对的值就是0或者1(因为只有两种状态),如下图:
布隆过滤器原理
上面的思路其实就是布隆过滤器的思想,只不过因为hash函数的限制,多个字符串很可能会hash成一个值。为了解决这个问题,布隆过滤器引入多个hash函数来降低误判率。
下图表示有三个hash函数,比如一个集合中有x,y,z三个元素,分别用三个hash函数映射到二进制序列的某些位上,假设我们判断w是否在集合中,同样用三个hash函数来映射,结果发现取得的结果不全为1,则表示w不在集合里面。
布隆过滤器处理流程
布隆过滤器应用很广泛,比如垃圾邮件过滤,爬虫的url过滤,防止缓存击穿等等。下面就来说说布隆过滤器的一个完整流程,相信读者看到这里应该能明白布隆过滤器是怎样工作的。
第一步:开辟空间
开辟一个长度为m的位数组(或者称二进制向量),这个不同的语言有不同的实现方式,甚至你可以用文件来实现。
第二步:寻找hash函数
获取几个hash函数,前辈们已经发明了很多运行良好的hash函数,比如BKDRHash,JSHash,RSHash等等。这些hash函数我们直接获取就可以了。
第三步:写入数据
将所需要判断的内容经过这些hash函数计算,得到几个值,比如用3个hash函数,得到值分别是1000,2000,3000。之后设置m位数组的第1000,2000,3000位的值位二进制1。
第四步:判断
接下来就可以判断一个新的内容是不是在我们的集合中。判断的流程和写入的流程是一致的。
误判问题
布隆过滤器虽然很高效(写入和判断都是O(1),所需要的存储空间极小),但是缺点也非常明显,那就是会误判。当集合中的元素越来越多,二进制序列中的1的个数越来越多的时候,判断一个字符串是否在集合中就很容易误判,原本不在集合里面的字符串会被判断在集合里面。