当前位置 主页 > 服务器问题 > Linux/apache问题 >

    pytorch之inception

    栏目:Linux/apache问题 时间:2020-01-06 22:39

    如下所示:

    from __future__ import print_function 
    from __future__ import division
    import torch
    import torch.nn as nn
    import torch.optim as optim
    import numpy as np
    import torchvision
    from torchvision import datasets, models, transforms
    import matplotlib.pyplot as plt
    import time
    import os
    import copy
    import argparse
    print("PyTorch Version: ",torch.__version__)
    print("Torchvision Version: ",torchvision.__version__)
    
    
    # Top level data directory. Here we assume the format of the directory conforms 
    #  to the ImageFolder structure
    

    数据集路径,路径下的数据集分为训练集和测试集,也就是train 以及val,train下分为两类数据1,2,val集同理

    data_dir = "/home/dell/Desktop/data/切割图像"
    # Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
    model_name = "inception" 
    # Number of classes in the dataset
    num_classes = 2#两类数据1,2
    
    # Batch size for training (change depending on how much memory you have)
    batch_size = 32#batchsize尽量选取合适,否则训练时会内存溢出
    
    # Number of epochs to train for 
    num_epochs = 1000
    
    # Flag for feature extracting. When False, we finetune the whole model, 
    #  when True we only update the reshaped layer params
    feature_extract = True
    
    # 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
    parser = argparse.ArgumentParser(description='PyTorch inception')
    parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #输出结果保存路径
    parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢复训练时的模型路径
    args = parser.parse_args()
    


    训练函数

    def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):
    
      since = time.time()
    
      val_acc_history = []
      
      best_model_wts = copy.deepcopy(model.state_dict())
      best_acc = 0.0
      print("Start Training, InceptionV3!") 
      with open("acc.txt", "w") as f1:
        with open("log.txt", "w")as f2:
          for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch+1, num_epochs))
            print('*' * 10)
            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
              if phase == 'train':
                model.train() # Set model to training mode
              else:
                model.eval()  # Set model to evaluate mode
        
              running_loss = 0.0
              running_corrects = 0
        
              # Iterate over data.
              for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
        
                # zero the parameter gradients
                optimizer.zero_grad()
        
                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                  
                  if is_inception and phase == 'train':
                    # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                    outputs, aux_outputs = model(inputs)
                    loss1 = criterion(outputs, labels)
                    loss2 = criterion(aux_outputs, labels)
                    loss = loss1 + 0.4*loss2
                  else:
                    outputs = model(inputs)
                    loss = criterion(outputs, labels)
        
                  _, preds = torch.max(outputs, 1)
        
                  # backward + optimize only if in training phase
                  if phase == 'train':
                    loss.backward()
                    optimizer.step()
        
                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
              epoch_loss = running_loss / len(dataloaders[phase].dataset)
              epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
        
              print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
              f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
              f2.write('\n')
              f2.flush()           
              # deep copy the model
              if phase == 'val':
                if (epoch+1)%50==0:
                  #print('Saving model......')
                  torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
                f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc))
                f1.write('\n')
                f1.flush()
              if phase == 'val' and epoch_acc > best_acc:
                f3 = open("best_acc.txt", "w")
                f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc))
                f3.close()
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
              if phase == 'val':
                val_acc_history.append(epoch_acc)
    
      time_elapsed = time.time() - since
      print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
      print('Best val Acc: {:4f}'.format(best_acc))
      # load best model weights
      model.load_state_dict(best_model_wts)
      return model, val_acc_history
    
     #是否更新参数
    def set_parameter_requires_grad(model, feature_extracting):
      if feature_extracting:
        for param in model.parameters():
          param.requires_grad = False
    
    
    
    def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
      # Initialize these variables which will be set in this if statement. Each of these
      #  variables is model specific.
      model_ft = None
      input_size = 0
    
      if model_name == "resnet":
        """ Resnet18
        """
        model_ft = models.resnet18(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)
        input_size = 224
    
      elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224
    
      elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg11_bn(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224
    
      elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
        model_ft.num_classes = num_classes
        input_size = 224
    
      elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
        input_size = 224
    
      elif model_name == "inception":
        """ Inception v3 
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs,num_classes)
        input_size = 299
    
      else:
        print("Invalid model name, exiting...")
        exit()
      
      return model_ft, input_size
    
    # Initialize the model for this run
    model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
    
    # Print the model we just instantiated
    #print(model_ft) 
    
    
    #准备数据
    data_transforms = {
      'train': transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
      ]),
      'val': transforms.Compose([
        transforms.Resize(input_size),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
      ]),
    }
    
    print("Initializing Datasets and Dataloaders...")
    
    
    # Create training and validation datasets
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
    # Create training and validation dataloaders
    dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']}
    
    # Detect if we have a GPU available
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    '''
    是否加载之前训练过的模型
    we='/home/dell/Desktop/dj/inception_050.pth'
    model_ft.load_state_dict(torch.load(we))
    '''
    # Send the model to GPU
    model_ft = model_ft.to(device)
    
    params_to_update = model_ft.parameters()
    print("Params to learn:")
    if feature_extract:
      params_to_update = []
      for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
          params_to_update.append(param)
          print("\t",name)
    else:
      for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
          print("\t",name)
    
    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
    # Decay LR by a factor of 0.1 every 7 epochs
    #exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)
    
    # Setup the loss fxn
    criterion = nn.CrossEntropyLoss()
    
    # Train and evaluate
    model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))
    
    '''
    #随机初始化时的训练程序
    # Initialize the non-pretrained version of the model used for this run
    scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
    scratch_model = scratch_model.to(device)
    scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
    scratch_criterion = nn.CrossEntropyLoss()
    _,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))
    
    # Plot the training curves of validation accuracy vs. number 
    # of training epochs for the transfer learning method and
    # the model trained from scratch
    ohist = []
    shist = []
    
    ohist = [h.cpu().numpy() for h in hist]
    shist = [h.cpu().numpy() for h in scratch_hist]
    
    plt.title("Validation Accuracy vs. Number of Training Epochs")
    plt.xlabel("Training Epochs")
    plt.ylabel("Validation Accuracy")
    plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
    plt.plot(range(1,num_epochs+1),shist,label="Scratch")
    plt.ylim((0,1.))
    plt.xticks(np.arange(1, num_epochs+1, 1.0))
    plt.legend()
    plt.show()
    '''