当前位置 主页 > 服务器问题 > Linux/apache问题 >

    Java滚动数组计算编辑距离操作示例

    栏目:Linux/apache问题 时间:2019-12-06 16:40

    本文实例讲述了Java滚动数组计算编辑距离操作。分享给大家供大家参考,具体如下:

    编辑距离(Edit Distance),也称Levenshtein距离,是指由一个字符串转换为另一个字符串所需的最少编辑次数。

    下面的代码摘自org.apache.commons.lang.StringUtils

    用法示例:

    StringUtils.getLevenshteinDistance(null, *)       = IllegalArgumentException
    StringUtils.getLevenshteinDistance(*, null)       = IllegalArgumentException
    StringUtils.getLevenshteinDistance("","")        = 0
    StringUtils.getLevenshteinDistance("","a")       = 1
    StringUtils.getLevenshteinDistance("aaapppp", "")    = 7
    StringUtils.getLevenshteinDistance("frog", "fog")    = 1
    StringUtils.getLevenshteinDistance("fly", "ant")    = 3
    StringUtils.getLevenshteinDistance("elephant", "hippo") = 7
    StringUtils.getLevenshteinDistance("hippo", "elephant") = 7
    StringUtils.getLevenshteinDistance("hippo", "zzzzzzzz") = 8
    StringUtils.getLevenshteinDistance("hello", "hallo")  = 1
    
    

    Java代码:

    public static int getLevenshteinDistance(String s, String t) {
      if (s == null || t == null) {
        throw new IllegalArgumentException("Strings must not be null");
      }
      int n = s.length(); // length of s
      int m = t.length(); // length of t
      if (n == 0) {
        return m;
      } else if (m == 0) {
        return n;
      }
      if (n > m) {
        // swap the input strings to consume less memory
        String tmp = s;
        s = t;
        t = tmp;
        n = m;
        m = t.length();
      }
      int p[] = new int[n+1]; //'previous' cost array, horizontally
      int d[] = new int[n+1]; // cost array, horizontally
      int _d[]; //placeholder to assist in swapping p and d
      // indexes into strings s and t
      int i; // iterates through s
      int j; // iterates through t
      char t_j; // jth character of t
      int cost; // cost
      for (i = 0; i<=n; i++) {
        p[i] = i;
      }
      for (j = 1; j<=m; j++) {
        t_j = t.charAt(j-1);
        d[0] = j;
        for (i=1; i<=n; i++) {
          cost = s.charAt(i-1)==t_j ? 0 : 1;
          // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
          d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1), p[i-1]+cost);
        }
        // copy current distance counts to 'previous row' distance counts
        _d = p;
        p = d;
        d = _d;
      }
      // our last action in the above loop was to switch d and p, so p now 
      // actually has the most recent cost counts
      return p[n];
    }
    
    

    实际上,上述代码的空间复杂度还可以进一步简化,使用一维数组替换滚动数组。

    Java代码:

    public int minDistance(String s, String t) {
      if (s == null || t == null) {
        throw new IllegalArgumentException("Strings must not be null");
      }
      int n = s.length(); // length of s
      int m = t.length(); // length of t
      if (n == 0) {
        return m;
      } else if (m == 0) {
        return n;
      }
      if (n > m) {
        // swap the input strings to consume less memory
        String tmp = s;
        s = t;
        t = tmp;
        n = m;
        m = t.length();
      }
      int d[] = new int[n+1]; // cost array, horizontally
      // indexes into strings s and t
      int i; // iterates through s
      int j; // iterates through t
      char t_j; // jth character of t
      int cost; // cost
      for (i = 0; i<=n; i++) {
        d[i] = i;
      }
      for (j = 1; j<=m; j++) {
        t_j = t.charAt(j-1);
        int pre = d[0];
        d[0] = j;
        for (i=1; i<=n; i++) {
          int temp = d[i];
          cost = s.charAt(i-1)==t_j ? 0 : 1;
          // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
          d[i] = Math.min(Math.min(d[i-1]+1, d[i]+1), pre+cost);
          pre = temp;
        }  
      }
      return d[n];
    }