当前位置 主页 > 服务器问题 > Linux/apache问题 >
在摄影测量学科中,国际摄影测量遵循OPK系统,即是xyz转角系统,而工业中往往使用zyx转角系统。
旋转矩阵的意义:描述相对地面的旋转情况,yaw-pitch-roll对应zyx对应k,p,w
#include <iostream> #include<stdlib.h> #include<eigen3/Eigen/Core> #include<eigen3/Eigen/Dense> #include<stdlib.h> using namespace std; Eigen::Matrix3d rotationVectorToMatrix(Eigen::Vector3d theta) { Eigen::Matrix3d R_x=Eigen::AngleAxisd(theta(0),Eigen::Vector3d(1,0,0)).toRotationMatrix(); Eigen::Matrix3d R_y=Eigen::AngleAxisd(theta(1),Eigen::Vector3d(0,1,0)).toRotationMatrix(); Eigen::Matrix3d R_z=Eigen::AngleAxisd(theta(2),Eigen::Vector3d(0,0,1)).toRotationMatrix(); return R_z*R_y*R_x; } bool isRotationMatirx(Eigen::Matrix3d R) { int err=1e-6;//判断R是否奇异 Eigen::Matrix3d shouldIdenity; shouldIdenity=R*R.transpose(); Eigen::Matrix3d I=Eigen::Matrix3d::Identity(); return (shouldIdenity-I).norm()<err?true:false; } int main(int argc, char *argv[]) { Eigen::Matrix3d R; Eigen::Vector3d theta(rand() % 360 - 180.0, rand() % 360 - 180.0, rand() % 360 - 180.0); theta=theta*M_PI/180; cout<<"旋转向量是:\n"<<theta.transpose()<<endl; R=rotationVectorToMatrix(theta); cout<<"旋转矩阵是:\n"<<R<<endl; if(! isRotationMatirx(R)){ cout<<"旋转矩阵--->欧拉角\n"<<R.eulerAngles(2,1,0).transpose()<<endl;//z-y-x顺序,与theta顺序是x,y,z } else{ assert(isRotationMatirx(R)); } return 0; }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np import math import random def isRotationMatrix(R) : Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 def rotationMatrixToEulerAngles(R) : assert(isRotationMatrix(R)) sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = sy < 1e-6 if not singular : x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else : x = math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return np.array([x, y, z]) def eulerAnglesToRotationMatrix(theta) : R_x = np.array([[1, 0, 0 ], [0, math.cos(theta[0]), -math.sin(theta[0]) ], [0, math.sin(theta[0]), math.cos(theta[0]) ] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ], [0, 1, 0 ], [-math.sin(theta[1]), 0, math.cos(theta[1]) ] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot( R_y, R_x )) return R if __name__ == '__main__' : e = np.random.rand(3) * math.pi * 2 - math.pi R = eulerAnglesToRotationMatrix(e) e1 = rotationMatrixToEulerAngles(R) R1 = eulerAnglesToRotationMatrix(e1) print ("\nInput Euler angles :\n{0}".format(e)) print ("\nR :\n{0}".format(R)) print ("\nOutput Euler angles :\n{0}".format(e1)) print ("\nR1 :\n{0}".format(R1))