当前位置 主页 > 网站技术 > 代码类 >

    pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

    栏目:代码类 时间:2020-01-02 18:06

    我用的是Anaconda3 ,用spyder编写pytorch的代码,在Anaconda3中新建了一个pytorch的虚拟环境(虚拟环境的名字就叫pytorch)。

    以下内容仅供参考哦~~

    1.首先打开Anaconda Prompt,然后输入activate pytorch,进入pytorch.

    2.输入pip install tensorboardX,安装完成后,输入python,用from tensorboardX import SummaryWriter检验是否安装成功。如下图所示:

    3.安装完成之后,先给大家看一下我的文件夹,如下图:

    假设用LeNet5框架识别图像的准确率,LeNet.py代码如下:

    import torch
    import torch.nn as nn
    from torchsummary import summary
    from torch.autograd import Variable
    import torch.nn.functional as F
     
    class LeNet5(nn.Module): #定义网络 pytorch定义网络有很多方式,推荐以下方式,结构清晰 
     def __init__(self):  
      super(LeNet5,self).__init__()  
      self.conv1 = nn.Conv2d(3, 6, 5)
      self.conv2 = nn.Conv2d(6, 16, 5)
      self.fc1 = nn.Linear(16*5*5, 120)
      self.fc2 = nn.Linear(120, 84)
      self.fc3 = nn.Linear(84, 2)
     def forward(self,x): 
      # print(x.size())
      x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
      # print(x.size())
      x = F.max_pool2d(F.relu(self.conv2(x)), 2)
      # print(x.size()) 
      x = x.view(x.size()[0], -1)#全连接层均使用的nn.Linear()线性结构,输入输出维度均为一维,故需要把数据拉为一维  
      #print(x.size())
      x = F.relu(self.fc1(x)) 
      # print(x.size())
      x = F.relu(self.fc2(x))
      #print(x.size())
      x = self.fc3(x)
      # print(x.size())
      return x
     
    net = LeNet5()
    data_input = Variable(torch.randn(16,3,32,32))
    print(data_input.size())
    net(data_input)
    print(summary(net,(3,32,32)))

    示网络结构如下图:

    训练代码(LeNet_train_test.py)如下:

    # -*- coding: utf-8 -*-
    """
    Created on Wed Jan 2 15:53:33 2019
    @author: Administrator
    """
     
    import torch
    import torch.nn as nn
    import os
    import numpy as np
    import matplotlib.pyplot as plt
    from torchvision import datasets,transforms
    import torchvision
    import LeNet
    from torch import optim
    import time
    from torch.optim import lr_scheduler
    from tensorboardX import SummaryWriter
     
     
    writer = SummaryWriter('LeNet5')
    data_transforms = {
      'train':transforms.Compose([
        #transforms.Resize(56),
        transforms.RandomResizedCrop(32),#
        transforms.RandomHorizontalFlip(),#已给定的概率随即水平翻转给定的PIL图像
        transforms.ToTensor(),#将图片转换为Tensor,归一化至[0,1]
        transforms.Normalize([0.485,0.456,0.406],[0.229, 0.224, 0.225])#用平均值和标准偏差归一化张量图像
        ]),
      'val':transforms.Compose([
        #transforms.Resize(56),
        transforms.CenterCrop(32),
        transforms.ToTensor(),
        transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
        ]),
      }
    data_dir = 'bees vs ants' #样本文件夹
    image_datasets = {x:datasets.ImageFolder(os.path.join(data_dir,x),
               data_transforms[x])
      for x in ['train','val']
      }
    dataloaders = {x:torch.utils.data.DataLoader(image_datasets[x],batch_size =16,
                shuffle = True,num_workers = 0)
      for x in ['train','val']
      }
    dataset_sizes = {x:len(image_datasets[x]) for x in ['train','val']}
    class_names = image_datasets['train'].classes
     
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
     
    def imshow(inp,title = None):
     #print(inp.size())
     inp = inp.numpy().transpose((1,2,0))
     mean = np.array([0.485,0.456,0.406])
     std = np.array([0.229,0.224,0.225])
     inp = std * inp + mean
     inp = np.clip(inp,0,1)
     plt.imshow(inp)
     if title is not None:
      plt.title(title)
     plt.pause(0.001)#为了让图像更新可以暂停一会
     
    #Get a batch of training data
    inputs,classes = next(iter(dataloaders['train']))
    #print(inputs.size())
    #print(inputs.size())
    #Make a grid from batch 
    out = torchvision.utils.make_grid(inputs)
    #print(out.size())
    imshow(out,title=[class_names[x] for x in classes])
     
    def train_model(model,criterion,optimizer,scheduler,num_epochs = 25):
     since = time.time()
     
     # best_model_wts = copy.deepcopy(model.state_dict())
     best_acc = 0.0
     
     
     for epoch in range(num_epochs):
      print('Epoch {}/{}'.format(epoch,num_epochs - 1))
      print('-' * 10)
      
      #Each epoch has a training and validation phase
      for phase in ['train','val']:
       if phase == 'train':
        scheduler.step()
        model.train() #Set model to training mode
       else:
        model.eval()
       
       running_loss = 0.0
       running_corrects = 0
       
       #Iterate over data
       for inputs,labels in dataloaders[phase]:
        inputs = inputs.to(device)
        # print(inputs.size())
        labels = labels.to(device)
        #print(inputs.size())
        # print(labels.size())
        
        #zero the parameter gradients(参数梯度为零)
        optimizer.zero_grad()
        
        #forward
        #track history if only in train
        with torch.set_grad_enabled(phase == 'train'):
         outputs = model(inputs)
         _,preds = torch.max(outputs,1)
         loss = criterion(outputs,labels)
         
         #backward + optimize only if in training phase
         if phase == 'train':
          loss.backward()
          optimizer.step()
        
        #statistics
        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)
       
       if phase == 'train':
        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]
        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_loss,epoch_acc))
        writer.add_scalar('Train/Loss', epoch_loss,epoch)
        writer.add_scalar('Train/Acc',epoch_acc,epoch)
       else:
        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]
        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase,epoch_loss,epoch_acc))
        writer.add_scalar('Test/Loss', epoch_loss,epoch)
        writer.add_scalar('Test/Acc',epoch_acc,epoch)
        if epoch_acc > best_acc:
         best_acc = epoch_acc
      
      print()
     writer.close() 
     time_elapsed = time.time() - since
     print('Training complete in {:.0f}m {:.0f}s'.format(
       time_elapsed // 60 , time_elapsed % 60))
     print('Best val Acc: {:4f}'.format(best_acc))
     
     #load best model weights
     #model.load_state_dict()#best_model_wts)
     return model
     
     
    def visualize_model(model,num_images = 6):
     was_training = model.training
     model.eval()
     
     
     images_so_far = 0
     plt.figure()
     
     with torch.no_grad():
      for i,(inputs,labels) in enumerate(dataloaders['val']):
       inputs = inputs.to(device)
       labels = labels.to(device)
       
       outputs = model(inputs)
       _,preds = torch.max(outputs,1)
       
       for j in range(inputs.size()[0]):
        images_so_far += 1
        ax = plt.subplot(num_images //2,2,images_so_far)
        ax.axis('off')
        ax.set_title('predicted: {}'.format(class_names[preds[j]]))
        imshow(inputs.cpu().data[j])
        
        if images_so_far == num_images:
         model.train(mode = was_training)
         return 
        model.train(mode=was_training)
     
     
    net = LeNet.LeNet5()
    net = net.to(device)
     
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer,step_size = 7,gamma = 0.1)
     
    net = train_model(net,criterion,optimizer,exp_lr_scheduler,num_epochs = 25)
     
     
     
    #net1 = train_model(net,criterion,optimizer,exp_lr_scheduler,num_epochs = 25)
    visualize_model(net)
     
     
    plt.ioff()
    plt.show()